LLC 공진형 컨버터는 고효율, 고밀도로 설계되어야 하며 특히 입-출력 사이의 절연 및 전압 변환의 역할을 하는 변압기의 부피와 손실을 줄이는 것이 중요하다. 높은 전력 밀도를 달성하기 위해 평면형 코어를 사용할 경우 제한된 창 면적 내에서 권선 배치에 따라 기생 성분들의 크기 및 변압기 손실이 크게 달라지기 때문에 여러 고려 사항에 대한 해석을 필요로 한다.
고전류 입력 조건 및 큰 자화 인덕턴스를 가지는 변압기는 자성체의 권선 굵기 및 turn 수가 증가함에 따라 더 넓은 창 면적을 가지는 코어를 선정하게 되는데, 이 경우 변압기의 전체 부피가 증가한다. 따라서 높은 전력 밀도를 달성하기 위해서는 변압기 창 면적의 효율적인 이용이 필수적이다. 특히 변압기에 평면형 코어를 적용하면 창 공간의 높이가 일반적인 변압기보다 낮으므로 권선의 선정 및 배치의 중요성이 더욱 강조된다.
그림 1. Transformer manufacturing form according to winding method.
(a) PCB winding method. (b) Wire winding method. (c) proposed winding method.
그림 1은 평면형 변압기 제작 시 적용 가능한 권선 형태에 따른 모습을 나타낸다. 그림 1. (a)의 PCB 권선법은 복잡한 권선 형태라도 일정하게 형성하는 것이 가능하고 인터리빙이 용이하며 조립성이 뛰어나다는 장점을 가지지만 낮은 창 이용률로 인해 고전류 동작에는 적합하지 않다는 단점을 가진다. 반대로 그림 1. (b)와 같은 형태의 litz wire를 이용한 wire 권선법은 고전류 및 고주파수 동작에 적합하다는 장점을 가지지만 권선의 제한된 곡률 반경으로 인해 복잡한 형태의 권선법을 구현하는 것이 어렵고 권선 병렬 배치 시에는 순환 전류 손실을 고려해야 한다. 따라서 고전류 입력의 평면형 변압기를 제작하는 경우, litz wire를 사용하여 전류 밀도를 낮추면서도 인터리빙 구조의 구현이 용이한 권선 형태를 가질 수 있도록 한다면 PCB 권선법의 장점과 wire 권선법의 장점을 변압기에 모두 적용할 수 있게 된다. 그림 1. (c)는 이를 위한 권선법의 형태로 적층형 보빈을 이용한다. 보빈에 litz wire를 감아 적층하는 방식이기 때문에 고전류 동작에 적합함과 동시에 인터리빙 구조를 쉽게 구현할 수 있다.
그림 2. (a) 3D model of serpentine winding. (b) 3d model of stacked bobbin for serpentine winding
높이가 낮고 면적이 넓은 평면형 변압기는 구조적으로 큰 기생 커패시턴스를 가진다. 변압기 내부의 기생 커패시턴스는 인덕턴스와 공진하여 노이즈를 발생시키고 이는 컨버터 전체 효율에 악영향을 끼친다. 그림 2는 기생 커패시터스 저감을 위해 제안하는 서펜타인 권선법의 권선 구조와 보빈 형태이다. 서펜타인 권선법은 litz wire를 사용하여 적층형 보빈의 상-하단 층을 번갈아 이월하는 동시에 코어와 수평 방향으로 권선이 진행된다. 이는 인접한 권선 간의 전위 차를 최소화하여 기생 커패시턴스에 저장되는 용량성 에너지를 줄인다. 또한 완성된 권선 구조는 기존의 일반적인 권선법과 비교하여 추가적인 면적이 필요하지 않기 때문에 변압기의 전력 밀도가 희생되지 않는다.
그림 3. (a) Potential distribution of the proposed serpentine winding method.
(b) Potential difference between layers of the serpentine winding method.
그림 3은 서펜타인 권선법의 층 별 전위 분포 및 층 간의 전위 차이를 나타낸다. 턴의 진행 방향이 수직 이동과 수평 이동을 반복하기 때문에 상단과 하단 층의 전위가 동일하게 증가한다. 이는 층 간 전위 차가 인가 전압을 턴 수로 나눈 만큼 줄어들게 한다.
그림 4. Comparison of capacitive energy distribution according to the winding method.
(a) U-type winding method. (b) Serpentine winding method
그림 4는 U-type 권선법과 서펜타인 권선법의 창면적 내 에너지 분포를 FEA 시뮬레이션을 통해 확인한 결과이다. 1차측은 단층의 수평 나선 구조를 가지고 2차측은 많은 턴 수로 인해 2층으로 구성하였다. 1차측과 2차측 모두 보빈을 2병렬로 구성하였으며 인터리빙을 위해 S-P-P-S 순서로 적층하였다. 그림 4. (a)는 U-type 권선법의 에너지 분포를, 그림 4. (b)는 서펜타인 권선법의 에너지 분포를 보여준다. 서펜타인 권선법을 적용하였을 때 U-type 권선법보다 층 간 에너지 분포가 적은 것을 확인할 수 있다. 이를 통해 서펜타인 권선법의 기생 커패시턴스 저감 효과를 확인하였다.
본 기술의 이용 및 활용에 대한 사항은 아래 "기술 문의"로 연락 바랍니다.
본 기술은 대한민국 특허법 및 국제 특허협력조약에 의해 권리를 보호 받으며, 독점적 권리는 한양대학교 전력전자연구실에 있습니다.
LLC 공진형 컨버터는 고효율, 고밀도로 설계되어야 하며 특히 입-출력 사이의 절연 및 전압 변환의 역할을 하는 변압기의 부피와 손실을 줄이는 것이 중요하다. 높은 전력 밀도를 달성하기 위해 평면형 코어를 사용할 경우 제한된 창 면적 내에서 권선 배치에 따라 기생 성분들의 크기 및 변압기 손실이 크게 달라지기 때문에 여러 고려 사항에 대한 해석을 필요로 한다.
고전류 입력 조건 및 큰 자화 인덕턴스를 가지는 변압기는 자성체의 권선 굵기 및 turn 수가 증가함에 따라 더 넓은 창 면적을 가지는 코어를 선정하게 되는데, 이 경우 변압기의 전체 부피가 증가한다. 따라서 높은 전력 밀도를 달성하기 위해서는 변압기 창 면적의 효율적인 이용이 필수적이다. 특히 변압기에 평면형 코어를 적용하면 창 공간의 높이가 일반적인 변압기보다 낮으므로 권선의 선정 및 배치의 중요성이 더욱 강조된다.
그림 1. Transformer manufacturing form according to winding method.
(a) PCB winding method. (b) Wire winding method. (c) proposed winding method.
그림 1은 평면형 변압기 제작 시 적용 가능한 권선 형태에 따른 모습을 나타낸다. 그림 1. (a)의 PCB 권선법은 복잡한 권선 형태라도 일정하게 형성하는 것이 가능하고 인터리빙이 용이하며 조립성이 뛰어나다는 장점을 가지지만 낮은 창 이용률로 인해 고전류 동작에는 적합하지 않다는 단점을 가진다. 반대로 그림 1. (b)와 같은 형태의 litz wire를 이용한 wire 권선법은 고전류 및 고주파수 동작에 적합하다는 장점을 가지지만 권선의 제한된 곡률 반경으로 인해 복잡한 형태의 권선법을 구현하는 것이 어렵고 권선 병렬 배치 시에는 순환 전류 손실을 고려해야 한다. 따라서 고전류 입력의 평면형 변압기를 제작하는 경우, litz wire를 사용하여 전류 밀도를 낮추면서도 인터리빙 구조의 구현이 용이한 권선 형태를 가질 수 있도록 한다면 PCB 권선법의 장점과 wire 권선법의 장점을 변압기에 모두 적용할 수 있게 된다. 그림 1. (c)는 이를 위한 권선법의 형태로 적층형 보빈을 이용한다. 보빈에 litz wire를 감아 적층하는 방식이기 때문에 고전류 동작에 적합함과 동시에 인터리빙 구조를 쉽게 구현할 수 있다.
그림 2. (a) 3D model of serpentine winding. (b) 3d model of stacked bobbin for serpentine winding
높이가 낮고 면적이 넓은 평면형 변압기는 구조적으로 큰 기생 커패시턴스를 가진다. 변압기 내부의 기생 커패시턴스는 인덕턴스와 공진하여 노이즈를 발생시키고 이는 컨버터 전체 효율에 악영향을 끼친다. 그림 2는 기생 커패시터스 저감을 위해 제안하는 서펜타인 권선법의 권선 구조와 보빈 형태이다. 서펜타인 권선법은 litz wire를 사용하여 적층형 보빈의 상-하단 층을 번갈아 이월하는 동시에 코어와 수평 방향으로 권선이 진행된다. 이는 인접한 권선 간의 전위 차를 최소화하여 기생 커패시턴스에 저장되는 용량성 에너지를 줄인다. 또한 완성된 권선 구조는 기존의 일반적인 권선법과 비교하여 추가적인 면적이 필요하지 않기 때문에 변압기의 전력 밀도가 희생되지 않는다.
그림 3. (a) Potential distribution of the proposed serpentine winding method.
(b) Potential difference between layers of the serpentine winding method.
그림 3은 서펜타인 권선법의 층 별 전위 분포 및 층 간의 전위 차이를 나타낸다. 턴의 진행 방향이 수직 이동과 수평 이동을 반복하기 때문에 상단과 하단 층의 전위가 동일하게 증가한다. 이는 층 간 전위 차가 인가 전압을 턴 수로 나눈 만큼 줄어들게 한다.
그림 4. Comparison of capacitive energy distribution according to the winding method.
(a) U-type winding method. (b) Serpentine winding method
그림 4는 U-type 권선법과 서펜타인 권선법의 창면적 내 에너지 분포를 FEA 시뮬레이션을 통해 확인한 결과이다. 1차측은 단층의 수평 나선 구조를 가지고 2차측은 많은 턴 수로 인해 2층으로 구성하였다. 1차측과 2차측 모두 보빈을 2병렬로 구성하였으며 인터리빙을 위해 S-P-P-S 순서로 적층하였다. 그림 4. (a)는 U-type 권선법의 에너지 분포를, 그림 4. (b)는 서펜타인 권선법의 에너지 분포를 보여준다. 서펜타인 권선법을 적용하였을 때 U-type 권선법보다 층 간 에너지 분포가 적은 것을 확인할 수 있다. 이를 통해 서펜타인 권선법의 기생 커패시턴스 저감 효과를 확인하였다.
본 기술의 이용 및 활용에 대한 사항은 아래 "기술 문의"로 연락 바랍니다.
본 기술은 대한민국 특허법 및 국제 특허협력조약에 의해 권리를 보호 받으며, 독점적 권리는 한양대학교 전력전자연구실에 있습니다.